Accelerated cell sheet detachment by copolymerizing hydrophilic PEG side chains into PNIPAm nanocomposite hydrogels.
نویسندگان
چکیده
One-end-connected short poly(ethylene glycol) (PEG) side chains were facilely introduced into the poly(N-isopropylacrylamide) (PNIPAm) nanocomposite hydrogel (NC gel) via in situ copolymerization of NIPAm monomer and PEG macromonomer in the aqueous suspension of hectorite clay Laponite XLS. The NC gels were characterized with Fourier transform infrared and x-ray photoelectron spectroscopy for the composition, DSC and transmittance for the phase separation temperature, dynamic mechanical spectra and swelling ratio for the interaction. Increasing the PEG content led to a small increase in the storage modulus and the lower critical solution temperature (LCST) of the copolymerized NC gels, and the LCST of the copolymerized NC gels was still below 37 °C. The L929 cell adhesion and proliferation on the surface of these NC gels were not suppressed by the incorporation of hydrophilic PEG side chains. By lowering temperature below the LCST, the cell sheet spontaneously detached from the copolymerized NC gels. The surface morphology and surface wettability of the NC gels were detected by atom force microscope and contact angle measurement. A rough and hydrophilic surface induced by a small amount of PEG side chains was found to be favorable to accelerate the cell sheet detachment, probably due to the enhanced water permeation into the gel-cell sheet interface.
منابع مشابه
Synthesis and Characterization of Poly(Ethylene Glycol) Based Thermo-Responsive Hydrogels for Cell Sheet Engineering
The swelling properties and thermal transition of hydrogels can be tailored by changing the hydrophilic-hydrophobic balance of polymer networks. Especially, poly(N-isopropylacrylamide) (PNIPAm) has received attention as thermo-responsive hydrogels for tissue engineering because its hydrophobicity and swelling property are transited around body temperature (32 °C). In this study, we investigated...
متن کاملPhotocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: structural, mechanical and cell adhesion characteristics.
Photopolymerized hydrogels are extensively investigated for various tissue engineering applications, primarily due to their ability to form hydrogels in a minimally invasive manner. Although photocrosslinkable hydrogels provide necessary biological and chemical characteristics to mimic cellular microenvironments, they often lack sufficient mechanical properties. Recently, nanocomposite approach...
متن کاملTough and Thermosensitive Poly(N-isopropylacrylamide)/Graphene Oxide Hydrogels with Macroscopically Oriented Liquid Crystalline Structures.
Bulk graphene oxide (GO) nanocomposite materials with macroscopically oriented GO liquid crystalline (LC) structures exhibit interesting anisotropic properties, but their facile preparations remain challenging. This work reports for the first time the facile preparation of poly(N-isopropylacrylamide) (PNIPAM)/GO nanocomposite hydrogels with macroscopically oriented LC structures with the assist...
متن کاملPNIPAM-MAPOSS Hybrid Hydrogels with Excellent Swelling Behavior and Enhanced Mechanical Performance: Preparation and Drug Release of 5-Fluorouracil
Poly(N-isopropylacrylamide) (PNIPAM) is a widely-studied polymers due to its excellent temperature sensitivity. PNIPAM-MAPOSS hybrid hydrogel, based on the introduction of acrylolsobutyl polyhedral oligomeric silsesquioxane (MAPOSS) into the PNIPAM matrix in the presence of polyethylene glycol, was prepared via radical polymerization. The modified hydrogels exhibited a thick, heterogeneous poro...
متن کاملUncharged Helical Modular Polypeptide Hydrogels for Cellular Scaffolds.
Grafted synthetic polypeptides hold appeal for extending the range of biophysical properties achievable in synthetic extracellular matrix (ECM) hydrogels. Here, N-carboxyanhydride polypeptide, poly(γ-propargyl-l-glutamate) (PPLG) macromers were generated by fully grafting the "clickable" side chains with mixtures of short polyethylene glycol (PEG) chains terminated with inert (-OH) or reactive ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomedical materials
دوره 7 5 شماره
صفحات -
تاریخ انتشار 2012